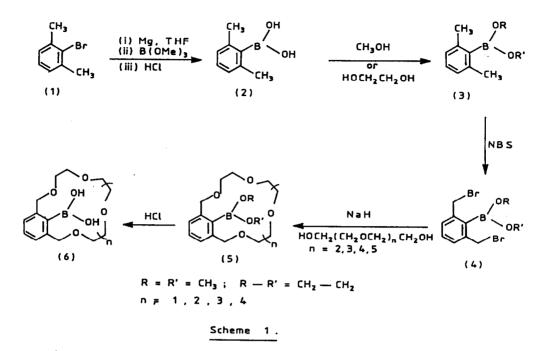
THE SYNTHESIS OF 2-BORONO-1,3-XYLYL CROWN ETHERS¹

Sudersan M. Tuladhar and Claudius D'Silva*


Institute of Molecular and Biomolecular Electronics, University of Wales, Bangor, Dean Street, Gwynedd, LL57 1UT. U. K.

Abstract: A synthetic route to 2-borono-1,3-xylyl crown ethers is described using a previously inaccessible 1,3-bis(bromomethyl) benzene boronate synthon.

The design and synthesis of macrocyclic polyethers in which a quest metal ion is complexed in close proximity to a redox centre has been the subject of numerous publications²⁻⁷. A significant number of these types of compounds utilise ferrocene as the redox centre⁴⁻⁷ or are conjugated to this centre via a Tt electron system^{5,6}. However due to the cationic nature of the ferrocene / ferrocenium redox couple these compounds cannot exhibit electrochemically enhanced cation binding⁷ as do macrocyclic compounds³ containing centres reduceable to radical anions. In an attempt to produce an electrochemically active macrocycle reduceable to a radical anion⁸ we have incorporated a boronic acid residue within a 1,3-xylyl crown ether. This residue is unusual in that it is capable of functioning both as a complexation agent for metal ions and saccharides⁹.

The synthesis of 2-borono-1,3-xylyl crown ethers (6, n = 1, 2, 3, 4) was effected as shown in Scheme 1. 1,3-Xylyl-2-boronic acid (2) was synthesised according to literature procedures¹⁰ from 2-bromo-1,3-xylene (1). The boronic acid group of compound (2) was protected either as the methyl boronate ester (3, $R=R'=CH_3$) or as the cyclic boronate ester (3, $R-R'=CH_2-CH_2$) in quantitative yields using methyl alcohol or ethylene glycol in refluxing dry benzene with 3Å molecular sieves (Soxhlet or Dean-Stark apparatus). Bromination of (3) with N-bromosuccinimide in the presence of azoisobutyronitrile (AIBN) in refluxing carbon tetrachloride afforded the previously¹⁰ inaccessible 1,3-bis(bromomethyl)benzene boronate synthons (4, $R=R'=CH_3$ or $R-R'=CH_2-CH_2$) in quantitative yields. Spectroscopic analysis

265

confirm the structures: (**4**, **R=R'=CH**₃) 250 MHz ¹H n.m.r. (CDCl₃): δ 3.70 (6H, s, OCH₃), 4.52 (4H, s, ArCH₂), 7.34-7.38 (3H, m, ArH); i.r. v_{max} 610 (C-Br), 1060, 1470 (C-B), 1340 (B-O) cm⁻¹; (**4**, **R-R'=CH₂-CH₂**) 250 MHz ¹H n.m.r. (CDCl₃): δ 4.47 (4H, s, OCH₂-CH₂O), 4.82 (4H, s, ArCH₂), 7.28-7.36 (3H, m, ArH); i.r. v_{max} 600 (C-Br), 1060, 1470 (C-B), 1320 (B-O) cm⁻¹.

Macrocyclisation of compound (4) with polyethylene glycols $(HOCH_2(CH_2OCH_2)_nCH_2OH, n = 2, 3, 4, 5)$ in benzene/ sodium hydride (reflux, 20 h) under conditions of high dilution gave the 1,3-xylyl crown ether derivatives of boronate ester (5, R=R'= CH₃ or R-R'= CH₂-CH₂, n = 1, 2, 3, 4). Acid hydrolysis (4M HCI, RT, 18 h) of the methyl boronate ester of (5, R=R'= CH₃, n= 1, 2, 3, 4) afforded the desired 2-borono-1,3-xylyl crown ethers (6, n = 1, 2, 3, 4) (40-50 % yield) after acid-base extractive work up. The corresponding cyclic boronate ester of (5, R-R'= CH₂-CH₂, n = 1, 2) failed to undergo hydrolysis under these or more drastic conditions to afford compound (6). Compound (6) was purified by flash chromatography (silica gel, CHCl₃ / MeOH 98 : 2 eluant) and was obtained as a colourless oil whose spectral properties were in

agreement with its structure. The ¹H n.m.r spectra of 2-borono-1,3-xylyl crown ethers show absorptions due to OCH₂ groups between δ 3.53 and 3.85, two singlets for magnetic nonequivalent benzylic protons at δ 4.78 and 5.08, due to intramolecular hydrogen bonding of boronic acid and the oxygen atoms of the macrocyclic ring, and a multiplet for the aromatic protons between δ 7.10 and 7.42. The i.r. spectrum of these compounds showed characteristic peaks at 1420 cm⁻¹ (B-C) and 1370 cm⁻¹ (B-O)¹¹. The small absorption peak at 3460 cm⁻¹ for the OH of boronic acid also supports the presence of intramolecular hydrogen bonding with the oxygen atoms of the crown. In the accurate FAB mass spectra of 2-borono-1,3-xylyl crown ethers (6, n=1 to 4), molecular ion (M⁺+1) peaks were not observed due to elimination of H₂O from -B(OH)₂ group. However for crown ethers (6, n=1, 2) distinct peaks were observed at 279 and 323 respectively for [(M⁺+1) -H₂O]. For the two larger crown ethers (6, n=3, 4), the [(M⁺+1) -H₂O] peaks were not prominent probably due to ring elimination. However the characteristic peaks at 149 for Ph(CH₂-)₂-B(OH)₂ and at 131 for Ph(CH₂-)₂-B=O were observed in the FAB mass spectra of all crown ethers (6, n=1 to 4).

Compound (6) was mentioned in the literature¹² without characterisation as an intermediate in the preparation of 2-hydroxy-1,3-xylyl crown ethers. Attempts to use this route in our hands, resulted in the isolation of a mixture of crown ethers which included debrominated 1,3-xylyl crown ether, 2-hydroxy-1,3-xylyl crown ether and some of the desired product. The new synthetic route reported here can be exploited in the preparation of nitrogen and sulphur containing 2-borono crown ethers and this work is currently in progress. Complexation studies on 2-borono crown ethers¹³ with metal ions show a pattern of selectivity comparable to that observed for 1,3-xylyl crown ethers¹⁴.

Acknowledgments: The author thanks the GEC / SERC Fellowship of Engineering (FEng) for the award of a Senior Fellowship in Molecular and Biomolecular Electronics and the SERC for support under Grant GR/F 16424. The award to C D'S by the FEng / GEC of two Buchi evaporators and an FT / IR instrument, to facilitate this and other programmes of research is also acknowledged. We finally thank Dr. Ballantine of the SERC Mass Spectrometry service centre, Swansea, for the accurate FAB mass spectrometry measurements.

References and Notes

- A preliminary report of this work was made: C. D'Silva and S. M. Tuladhar, Presented in XVI International Symposium on Macrocyclic Chemistry, Sheffield, UK, 1-6 September 1991; Abstract No P111;
- 2. R. E. Wolf. Jr. and S. R. Copper, J. Am. Chem. Soc., 1984, 106, 4646.
- A. Kaifer, D. A. Gustowski, L. Echegoyen, V. J. Gatto, R. A. Schultz, J. P. Cleary, C. R. Morgan, D. M. Goli, A. M. Rios and G. W. Gokei, *J. Am. Chem.Soc.*, 1985, 107, 1958.
- 4. P. D. Beer, J. Chem. Soc. Chem. Commun., 1985, 1115.
- 5. P. D. Beer, H. Sikanyika, C. Blackburn and J. F. McAleer, *J. Chem. Soc. Chem. Commun.*, 1989, 1831.
- 6. M. P. Andrews, C. Blackburn, J.F. McAleer and V.D. Patel, J. Chem. Soc. Chem .Commun., 1987, 1122.
- 7. C. D. Hall, N. W. Sharpe, I. P. Danks and Y. P. Sang, *J. Chem. Soc. Chem. Commun.*, 1989, 419.
- 8. J. H. Morris, H. J. Gysling and D. Reed, Chem. Rev., 1985, 85, 51.
- 9. C. D'Silva and D. Green, J. Chem. Soc. Chem. Commun., 1991, 227.
- 10. R. T. Hawkins, W. J. Lennarz and H. R. Synder, J. Am. Chem. Soc., 1960, 82, 3053.
- R. L. Werner and K. G. O'Brien, Aust. J. Chem., 1955, 8, 355; D. E. Bethell and N. Sheppard, Trans Faraday Soc., 1955, 51, 9; Z. Szeleczky, M. Soti, Gy. Horvath and K. Albrecht, Steroids 1981, 38, 11.
- M. S. Ptasinska, V. M. L. J. Aarts, R. J. M. Egberink, J. van Eerden, S. Harkema and D. Reinhoudt, J. Org. Chem., 1988, 53, 5484.
- 13. G. Williams, S. M. Tuladhar and C. D'Silva, J. Phys. Org. Chem. (1991) (submitted).
- C. D'Silva, G. Williams and S. M. Tuladhar, Presented in XVI International Symposium on Macrocyclic Chemistry, Sheffield, UK, 1-6 September 1991; Abstract No P110; S. M. Tuladhar, G. Williams and C. D'Silva, Anal. Chem., 1991, 63, 2282.

(Received in UK 5 November 1991)

268